A semidefinite relaxation scheme for quadratically constrained
نویسنده
چکیده مقاله:
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the underlying problem in polynomial time .
منابع مشابه
Semidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملOn Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Programming
Two important topics in the study of Quadratically Constrained Quadratic Programming (QCQP) are how to exactly solve a QCQP with few constraints in polynomial time and how to find an inexpensive and strong relaxation bound for a QCQP with many constraints. In this thesis, we first review some important results on QCQP, like the S-Procedure, and the strength of Lagrangian Relaxation and the semi...
متن کاملA modified alternating direction method for convex quadratically constrained quadratic semidefinite programs
We propose a modified alternate direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto th...
متن کاملSemidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems...
متن کاملKKT Solution and Conic Relaxation for Solving Quadratically Constrained Quadratic Programming Problems
To find a global optimal solution to the quadratically constrained quadratic programming problem, we explore the relationship between its Lagrangian multipliers and related linear conic programming problems. This study leads to a global optimality condition that is more general than the known positive semidefiniteness condition in the literature. Moreover, we propose a computational scheme that...
متن کاملA new semidefinite programming relaxation scheme for a class of quadratic matrix problems
Weconsider a special class of quadraticmatrix optimizationproblemswhich often arise in applications. By exploiting the special structure of these problems, we derive a new semidefinite relaxation which, under mild assumptions, is proven to be tight for a larger number of constraints than could be achieved via a direct approach. We show the potential usefulness of these results when applied to r...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره None
صفحات 29- 34
تاریخ انتشار 2011-06
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023